WELCOME & INTRODUCTIONS

Kimberly Moss, Doug Hammon (The Ohio State University)
Member Introduction

• Name
• Organization
MEETING PURPOSE, FORMAT AND DISCUSSION GUIDELINES

Marie Keister (Engage Public Affairs)
Meeting Purpose/Agenda

• Recap Master Plan Purpose
• Recap Public/Stakeholder Input to Date
• Study and Schedule Update
 ▪ Environmental Overview
 ▪ Inventory of Existing Conditions
 ▪ Aviation Activity Forecasts
• Next Steps
Format & Discussion Guidelines

- Respect each other’s time
- Respect each other’s ideas
- It’s okay to disagree, please don’t be disagreeable
RECAP: AIRPORT MISSION & MASTER PLAN PURPOSE

Marie Keister (Engage Public Affairs)
Airport Overview

• One of the leading general aviation facilities in the nation
• One of the nation’s premier university-owned and operated facilities
 – Less than 30 university airports nationwide
 – Three owned by tier-1 institutions
• Supports interdisciplinary learning, discovery, engagement
• Contributes to economic vitality of the central Ohio region
Airport Master Plan

• Combine community engagement with the university’s strategic vision to formulate the blueprint for the airport’s long-term development

• Identify current and future needs and gain consensus on investment priorities for the next 20 years

Master plan mission: How do we retain and enhance this premier status?
Study Area
RECAP: PUBLIC AND STAKEHOLDER INPUT TO DATE

Marie Keister (Engage Public Affairs) & Maria Muia (Woolpert)
Strengths (across COC, TAC, Public Meeting)

- Physical location of the airport
- Proximity to major development, OSU main campus & businesses
- Air traffic control & tower
- Existing facilities
- Airport staff & management
- Contributor to economic development/growth
- Educational airport (teaching, real-world experience)
Strengths (across various groups)

• COC & TAC:
 ▪ Flexibility/availability
 ▪ University support
 ▪ Services/value to business community
 ▪ Partnership with CRAA airports

• TAC & Public:
 ▪ Easy access
 ▪ Two runways
 ▪ Historical significance
 ▪ Open space

• COC & Public:
 ▪ Student development & opportunities
Weaknesses (across COC, TAC, Public Meeting)

- Aging infrastructure
- Limited hanger space
- Communication to community & neighborhoods
- Noise issues
Weaknesses (across various groups)

• COC & TAC:
 ▪ Aging equipment
 ▪ Lack of public access
 ▪ Physical design constraints
 ▪ Limited staff
 ▪ Community relations challenge
 ▪ Competing development (residential vs airport)
 ▪ Lack of political engagement/use
 ▪ Single revenue source/limited funds

• COC & Public:
 ▪ Outdated buildings
Vision (across COC, TAC, Public Meeting)

• Center for innovative technology/unmanned aviation vehicles (UAV)
• Local resource for the public (aviation and open spaces)
• Balance airport needs with the relationship with local community
• Improved asset as an educational aviation center
Vision (across various groups)

• COC & TAC:
 - Improved safety record
 - Runway extension
 - Expand flight education
 - National recognition as aviation leader
 - Nat’l recognized for producing pilots
 - Cohabited space with Columbus State programs
 - National research center & park
 - Leader in NextGen research
 - Public partnerships & engagement

• TAC & Public:
 - Airport renovation
 - Flight school/activities for public
 - Open space/trails for public use

• COC & Public:
 - Reduced noise (complaints)
Success (across COC, TAC, Public Meeting)

- Commitment/support from university leadership
- Community/stakeholder support & buy-in
What is success? (across various groups)

• COC & TAC:
 ▪ Community acceptance/voices heard
 ▪ Broad support
 ▪ Overall plan agreement

• TAC & Public:
 ▪ Transparency
 ▪ Financial responsibility

• COC & Public:
 ▪ Public understanding that airport is an asset
 ▪ Trust between airport neighbors
 ▪ Reduced noise
DRAFT INVENTORY OF EXISTING CONDITIONS

Maria Muia, Woolpert
Inventory/Existing Conditions

Airport Location and Role

Located in northwestern Franklin County
7 miles northwest of the university’s campus
National Priority GA airport (FAA)
FAR Part 139 certificated airport
Reliever airport to CMH (FAA)
GA Level 1 airport (ODOT)
KOSU Role

University Use

Government Support

NIFA SAFECON

Medical Support

Business Use

Recreational Use
Inventory/
Existing Conditions

Source: Woolpert, Inc., 2017; FAA
Inventory/
Existing Conditions

New Terminal Building Underway - 29,000 sf.

Source: KOSU Facebook Page, accessed February 2018
Inventory/
Existing Conditions

23 **airport buildings** assessments consisting of:

- Storage Facilities – 17,350 sf
- Maintenance Facilities – 52,510 sf
- Office with Conventional Hangar – 85,290 sf
- Conventional Hangars – 68,675 sf
- T-Hangars – 131,420 sf
Inventory/
Existing Conditions

23 airport buildings assessments consisting of:
- Storage Facilities – 17,350 sf
- Maintenance Facilities – 52,510 sf
- Office with Conventional Hangar – 85,290 sf
- Conventional Hangars – 68,675 sf
- T-Hangars – 131,420 sf

New Terminal – WILL BE BRAND NEW!
Inventory/Existing Conditions

Aircraft Parking Aprons
- 2 asphalt aprons: ~35,300 SF and 2,000 SF.
- ~131 paved tie-downs available on the aprons.

Auto Parking
- ~180 paved parking spaces
 (including 7 handicap)
- Overflow parking for over 50 cars
- 2 automobile electric charging stations
- Enterprise Car Rental
- Car2Go

Source: Woolpert, Inc., 2017; Google Earth, February 2018
Inventory/
Existing Conditions

<table>
<thead>
<tr>
<th>Year</th>
<th>Model Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Pick-Up Spreader Western Products</td>
</tr>
<tr>
<td>2001</td>
<td>Runway Sweeper Oshkosh HB-2723</td>
</tr>
<tr>
<td>1987</td>
<td>Runway Sweeper Idaho Norland 16 ft.</td>
</tr>
<tr>
<td>1987</td>
<td>Snow Blower Oshkosh H-2318</td>
</tr>
<tr>
<td>1986</td>
<td>Plow Trucks Oshkosh P-2526-SP</td>
</tr>
<tr>
<td>1986</td>
<td>Loader Case W30</td>
</tr>
<tr>
<td>1985</td>
<td>Tractor Case 1594</td>
</tr>
<tr>
<td>1985</td>
<td>Spreader Wilmar 600 Series</td>
</tr>
<tr>
<td>2017</td>
<td>Backhoe John Deere 310SL</td>
</tr>
</tbody>
</table>

Source: KOSU Facebook Page, accessed February 2018
Inventory/

Existing Conditions

Aircraft Rescue and Firefighting Battalion 7 - Station 11, Built 1991

- Columbus Fire Department Station #11 located at the main entrance off West Case Road
- 1 ARFF truck - 500 gal. of water, 60 gal. foam, 500 pounds dry chemicals.

FAR 139 Index: IV A U 09/1975

<table>
<thead>
<tr>
<th>Apparatus</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine 11</td>
<td>2005 Sutphen</td>
</tr>
<tr>
<td>Rescue 11</td>
<td>2012 Sutphen/SVI</td>
</tr>
<tr>
<td>Medic 11</td>
<td>2011 International/Horton</td>
</tr>
<tr>
<td>Battalion 7</td>
<td>2013 Ford Explorer</td>
</tr>
<tr>
<td>EMS-17</td>
<td>2013 Ford Explorer</td>
</tr>
<tr>
<td>Boat 11</td>
<td>2013 Zodiac 2</td>
</tr>
</tbody>
</table>

Source: Google Earth, Street View, accessed February 2018
Within Class D airspace - which extends from the ground to 2,500 feet MSL. Falls on outer edge of John Glenn Columbus International Airport’s (CMH) Class C airspace.
Inventory/
Existing Conditions

KOSU Air Traffic Control Tower
• Staffed by Midwest Air Traffic Control Services
• 87,000 annual operations and increasing
• Rank #186 out of 517 total towered airports in operations in country
• 20% are Air Taxi

Source: Woolpert, Inc., 2017; KOSU Facebook Page, accessed February 2018
Inventory/Existing Conditions

Instrument Approach Procedures

- 4 instrument approach procedures (IAP)
- All serve primary runway 9R/27L
- Provide users with approach minimums allowing for safe landing in a variety of weather conditions
- Best approach minimums –
 - 200-foot ceiling with ½ mile visibility

Instrument Approach Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILS/LOC RW 09R</td>
<td>1105-1/2</td>
<td>200 (200-1/2)</td>
<td>1420-1</td>
<td>515 (600-1)</td>
</tr>
<tr>
<td>RNAV RW 09R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV RW 27L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV RW 09R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDB RW 09R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inventory/Existing Conditions

Weather Reporting

ASOS/ATIS
On ground – recording via phone (614) 451-2465
Inflight – via radio frequency 121.35
Lighted wind indicator

Source: NOAA National Weather Service, Aviation Weather Center
Inventory/Existing Conditions

FY 2017 Ohio Towered Airport Operations

<table>
<thead>
<tr>
<th>Airport Name</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>James M Cox Dayton International</td>
<td></td>
</tr>
<tr>
<td>Akron-Canton Regional</td>
<td></td>
</tr>
<tr>
<td>Cincinnati Municipal Airport Lunken Field</td>
<td></td>
</tr>
<tr>
<td>The Ohio State University</td>
<td></td>
</tr>
<tr>
<td>Cleveland-Hopkins International</td>
<td></td>
</tr>
<tr>
<td>John Glenn International</td>
<td></td>
</tr>
</tbody>
</table>

FY 2017 ATCT Operations - University Airports With Towers

<table>
<thead>
<tr>
<th>University Name</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ohio State Univ.</td>
<td></td>
</tr>
<tr>
<td>Purdue Univ.</td>
<td></td>
</tr>
<tr>
<td>Univ. of Oklahoma Westheimer</td>
<td></td>
</tr>
<tr>
<td>Univ. Park - State College</td>
<td></td>
</tr>
<tr>
<td>University of Illinois-Willard</td>
<td></td>
</tr>
<tr>
<td>Willow Run - Detroit</td>
<td></td>
</tr>
</tbody>
</table>

Source: FAA Air Traffic Control Tower (ATCT) Aircraft Operations Counts, Fiscal Years 2016 – 2017 (Ranked by State), Quadrex Aviation, LLC, November 2017
Inventory/
Existing Conditions

KOSU
Average Daily Operations
(recorded by ATCT)

Source: FAA Operations & Performance Data, Accessed February, 2018

FY 2017 KOSU Operations

Source: FAA Air Traffic Control Tower (ATCT) Aircraft Operations Counts, Fiscal Years 2016 – 2017 (Ranked by State), Quadrex Aviation, LLC, November 2017
Inventory/
Existing Conditions

Fueling

- 8 aboveground fuel tanks (6 for aircraft; 2 for vehicles)
 - 24,000 gal. AvGas
 - 48,000 gal. Jet A fuel
 - 4,000 gal of MoGas
 - 4 mobile aircraft refuelers

Aircraft De-icing via Mobile Truck

- Type I - *remove* snow, frost, and ice on aircraft
- Type IV - *prevent* snow, frost, or ice build-up
- 1 Mobile de-ice truck

Source: Woolpert, Inc., 2017; KOSU, 2018
Inventory/Existing Conditions

Aircraft Maintenance

Approved Part 145 Repair Station, # IKBR028F
- Major airframe
- Major power plant
- Oxygen

Service almost all single-engine & most multi-engine aircraft.
- Avionics department
- Parts department
- Authorized Cirrus Service Center
- Authorized Diamond Service Center

Source: https://osuairportfbo.org/services/aircraft-maintenance
User Survey Summary of Results

Responder Aircraft Characteristics

- Single-engine Prop
- Multi-engine Prop
- Jet under 12,500 lbs
- Jet over 12,500 lbs
- Other

Airport Services

- Excellent 36%
- Good 42%
- Average 16%
- Poor 6%
User Survey Summary of Results

User Characteristics
- Business: 24%
- Recreation: 39%
- Education: 22%
- Other: 15%

Airport Facilities
- Excellent: 13%
- Good: 41%
- Average: 33%
- Poor: 13%
Second airport located at the Transportation Research Center in East Liberty, Ohio.

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owned by The Ohio State University</td>
<td>Located inside a secure, access controlled facility, requiring pre-approval for all land and/or air access to the site.</td>
</tr>
<tr>
<td>Located at a state-of-the-art research facility</td>
<td>45 miles from main campus</td>
</tr>
<tr>
<td>Restricted access allows for uninterrupted flight operations</td>
<td>Lacks modern navigational, communications, and lighting system, as well as air traffic control</td>
</tr>
<tr>
<td>Limited impacts on surrounding community</td>
<td>No employment opportunities for students</td>
</tr>
<tr>
<td></td>
<td>No interaction between students and professional pilots</td>
</tr>
<tr>
<td></td>
<td>No opportunities for research to be conducted in a real-world setting</td>
</tr>
<tr>
<td></td>
<td>No opportunities to engage surrounding community</td>
</tr>
</tbody>
</table>
QUESTIONS?
DRAFT AVIATION ACTIVITY FORECASTS

Sarah Arnold, Marr Arnold Planning
Forecast of Aviation Activity Process

- Review historic and current activity
- Understand airport role
- Review trends influencing future airport growth
- Develop forecasts
 - Based Aircraft
 - Operations
- Identify critical aircraft family
Historic and Current Activity

- **Based Aircraft**
 - Drop overall since 2007, but up 17% from 2016-2017
- **Operations**
 - 1.2% CAGR from 2007-2017
 - Up 14% from 2016-2017
Trends Impacting Future Growth: Regional Demographics (KOSU Service Area)

Population
- **1990-2016:** 1.4% CAGR
- **2010-2040:** 0.8% CAGR

Employment
- **1990-2016:** 0.9% CAGR
- **2015-2037:** 1.1% CAGR

Per Capita Income
- **1990-2016:** 3.3% CAGR
- **2015-2037:** 1.4% CAGR
Trends Impacting Future Growth: National General Aviation Trends

Opportunities
- Projected fleet growth (2017-37) in jets (2.3% AAGR), rotorcraft (1.6%), turboprops (1.4%)
- Growth in light sport and experimental aircraft & activity
- Increase in business flying and reliance on general aviation travel
- Recovery in aircraft shipments and billings

Threats
- Projected decline in piston fleet over next 20 years
- Minimal operational growth (0.3% AAGR 2017-37)
- Decline in active pilots
- Phase out in 100LL fuel
- Cost of general aviation aircraft
Trends Impacting Future Growth: Competing Airports

<table>
<thead>
<tr>
<th>Airport</th>
<th>Primary Runway Length and Width</th>
<th>Based Aircraft</th>
<th>Annual Operations</th>
<th>Distance from KOSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio State University</td>
<td>5,004' x 100'</td>
<td>187</td>
<td>90,687</td>
<td></td>
</tr>
<tr>
<td>Bolton Field</td>
<td>5,500’ x 100’</td>
<td>81</td>
<td>22,700</td>
<td>11 nm S</td>
</tr>
<tr>
<td>Delaware Municipal</td>
<td>5,800’ x 100’</td>
<td>102</td>
<td>39,300</td>
<td>12 nm N</td>
</tr>
<tr>
<td>Union County</td>
<td>4,218' x 75'</td>
<td>56</td>
<td>31,900</td>
<td>15 nm NW</td>
</tr>
<tr>
<td>Rickenbacker International</td>
<td>12,202' x 200'</td>
<td>28</td>
<td>26,307</td>
<td>17 nm SE</td>
</tr>
<tr>
<td>Madison County</td>
<td>4,001’ x 75’</td>
<td>49</td>
<td>41,400</td>
<td>20 nm SW</td>
</tr>
<tr>
<td>Fairfield County</td>
<td>5,004’ x 75’</td>
<td>104</td>
<td>43,100</td>
<td>27 nm SE</td>
</tr>
<tr>
<td>Newark-Heath</td>
<td>4,649’ x 75’</td>
<td>64</td>
<td>12,500</td>
<td>28 nm W</td>
</tr>
<tr>
<td>Pickaway County</td>
<td>4,346’ x 75’</td>
<td>32</td>
<td>35,000</td>
<td>34 nm S</td>
</tr>
<tr>
<td>TOTAL</td>
<td>TOTAL</td>
<td>703</td>
<td>342,137</td>
<td></td>
</tr>
</tbody>
</table>
Forecast Process

• Short Term (2022), Mid Term (2027), and Long Term (2037)
• Variety of methodologies based on trends analysis
• Activity components
 • Based Aircraft
 • Based Aircraft Fleet Mix
 • Operations
 • Local vs. Itinerant Operations
 • Operational Fleet Mix
 • Peak Hour Operations
Based Aircraft Projections

<table>
<thead>
<tr>
<th>Year</th>
<th>Method 1 - Population Growth</th>
<th>Method 2 - PCI Growth</th>
<th>Method 3 - Linear Trendline</th>
<th>Method 4 - National Growth by Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic</td>
<td>2017 187</td>
<td>2027 218</td>
<td>2037 218</td>
<td>2037 Variation from TAF</td>
</tr>
<tr>
<td>Projected</td>
<td>2022 194</td>
<td>2027 202</td>
<td>2037 202</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2027 216</td>
<td>2037 218</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2037 218</td>
<td></td>
</tr>
<tr>
<td>AAGR 2017-2037</td>
<td>0.76%</td>
<td>1.44%</td>
<td>1.78%</td>
<td>0.55%</td>
</tr>
<tr>
<td>2037 Variation from TAF</td>
<td>-19.5%</td>
<td>-4.5%</td>
<td>2.3%</td>
<td>-24.6%</td>
</tr>
</tbody>
</table>
Based Aircraft Projections

- 1- Projected Population Growth
- 2- Projected Per Capita Income Growth
- 3- Linear Trendline (PREFERRED)
- 4- FAA Aerospace by Fleet Mix

Actual and projected based aircraft figures for the years 2017, 2022, 2027, 2032, and 2037.
Fleet Mix Projections

<table>
<thead>
<tr>
<th>Year</th>
<th>Single Engine</th>
<th>Multi-Engine</th>
<th>Jet</th>
<th>Helicopter</th>
<th>Light Sport</th>
<th>Experimental</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic</td>
<td>2017</td>
<td>138</td>
<td>21</td>
<td>16</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Projected</td>
<td>2022</td>
<td>143</td>
<td>22</td>
<td>18</td>
<td>8</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>155</td>
<td>23</td>
<td>21</td>
<td>11</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2037</td>
<td>174</td>
<td>27</td>
<td>30</td>
<td>17</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent of Total</th>
<th>Historic</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic</td>
<td>2017</td>
<td>74%</td>
<td>11%</td>
<td>9%</td>
<td>4%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Projected</td>
<td>2022</td>
<td>72%</td>
<td>11%</td>
<td>9%</td>
<td>4%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>71%</td>
<td>10%</td>
<td>10%</td>
<td>5%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>2037</td>
<td>65%</td>
<td>10%</td>
<td>11%</td>
<td>6%</td>
<td>4%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Operations Projections

<table>
<thead>
<tr>
<th>Year</th>
<th>Method 1-OPBA</th>
<th>Method 2-Employment Growth</th>
<th>Method 3-Historic Growth</th>
<th>Method 4-FAA Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic</td>
<td>2017</td>
<td>90,687</td>
<td>90,687</td>
<td>90,687</td>
</tr>
<tr>
<td>Projected</td>
<td>2022</td>
<td>95,900</td>
<td>95,600</td>
<td>96,300</td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>106,500</td>
<td>100,800</td>
<td>102,300</td>
</tr>
<tr>
<td></td>
<td>2037</td>
<td>129,100</td>
<td>112,000</td>
<td>115,500</td>
</tr>
<tr>
<td>AAGR 2017-2037</td>
<td>1.78%</td>
<td>1.06%</td>
<td>1.22%</td>
<td>0.31%</td>
</tr>
<tr>
<td>2037 Variation from TAF</td>
<td>23.8%</td>
<td>12.1%</td>
<td>14.8%</td>
<td>-1.9%</td>
</tr>
</tbody>
</table>
Local/Itinerant Operational Split

2037 Projection of Local/Itinerant Operational Split

- Local: 41%
- Itinerant- Air Taxi: 19%
- Itinerant- General Aviation: 40%
Operational Mix Projections

FY 2017 KOSU OPERATIONS
- Single-Engine: 79.8%
- Multi Engine/Turboprop: 5.8%
- Jet: 5.3%
- Helicopter: 8.0%
- Light Sport/Experimental: 0.8%
- Military: 0.3%

FY 2037 KOSU OPERATIONS
- Single-Engine: 73.3%
- Multi Engine/Turboprop: 5.8%
- Jet: 10.0%
- Helicopter: 8.8%
- Light Sport/Experimental: 1.8%
- Military: 0.3%
Peak Period Forecasts

2017 Tower Counts

Peak Hour Operations Forecast
Preferred Forecast Summary & TAF Comparison

<table>
<thead>
<tr>
<th>Forecast Element</th>
<th>Year</th>
<th>Recommended Forecast</th>
<th>Adjusted TAF Forecast</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based Aircraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Year</td>
<td>2017</td>
<td>187</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Base Year + 5 Years</td>
<td>2022</td>
<td>198</td>
<td>206</td>
<td>-4.0%</td>
</tr>
<tr>
<td>Base Year + 10 Years</td>
<td>2027</td>
<td>220</td>
<td>226</td>
<td>-2.7%</td>
</tr>
<tr>
<td>Base Year + 15 Years</td>
<td>2032</td>
<td>243</td>
<td>243</td>
<td>0.0%</td>
</tr>
<tr>
<td>Base Year + 20 Years</td>
<td>2037</td>
<td>266</td>
<td>260</td>
<td>2.3%</td>
</tr>
<tr>
<td>AAGR 2017-2037</td>
<td></td>
<td>1.8%</td>
<td>1.7%</td>
<td></td>
</tr>
<tr>
<td>Total Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Year</td>
<td>2017</td>
<td>89,930</td>
<td>89,930</td>
<td>0.0%</td>
</tr>
<tr>
<td>Base Year + 5 Years</td>
<td>2022</td>
<td>94,800</td>
<td>91,700</td>
<td>3.3%</td>
</tr>
<tr>
<td>Base Year + 10 Years</td>
<td>2027</td>
<td>99,900</td>
<td>93,600</td>
<td>6.3%</td>
</tr>
<tr>
<td>Base Year + 15 Years</td>
<td>2032</td>
<td>105,300</td>
<td>95,500</td>
<td>9.3%</td>
</tr>
<tr>
<td>Base Year + 20 Years</td>
<td>2037</td>
<td>111,000</td>
<td>97,600</td>
<td>12.1%</td>
</tr>
<tr>
<td>AAGR 2017-2037</td>
<td></td>
<td>1.1%</td>
<td>0.4%</td>
<td></td>
</tr>
</tbody>
</table>
Critical Aircraft

<table>
<thead>
<tr>
<th>ARC Family</th>
<th>IFR Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-I</td>
<td>4,713</td>
</tr>
<tr>
<td>A-II</td>
<td>2,078</td>
</tr>
<tr>
<td>B-I</td>
<td>1,670</td>
</tr>
<tr>
<td>B-II</td>
<td>3,747</td>
</tr>
<tr>
<td>C-I/D-I</td>
<td>804</td>
</tr>
<tr>
<td>C-II/D-II</td>
<td>1,274</td>
</tr>
<tr>
<td>C-III/D-III</td>
<td>60</td>
</tr>
<tr>
<td>C-IV/D-IV</td>
<td>2</td>
</tr>
<tr>
<td>HELI</td>
<td>90</td>
</tr>
<tr>
<td>Other/Unknown</td>
<td>72</td>
</tr>
<tr>
<td>Total IFR Aircraft Operations</td>
<td>14,620</td>
</tr>
</tbody>
</table>

C-II/D-II

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LJ75 - Learjet 75</td>
<td>292</td>
</tr>
<tr>
<td>CL30 - Bombardier Challenger 300</td>
<td>228</td>
</tr>
<tr>
<td>H25B - BAe HS 125/700-800/Hawker 800</td>
<td>184</td>
</tr>
<tr>
<td>LJ45 - Bombardier Learjet 45</td>
<td>152</td>
</tr>
<tr>
<td>CL60 - Bombardier Challenger 600</td>
<td>104</td>
</tr>
<tr>
<td>CL35 - Bombardier Challenger 300</td>
<td>96</td>
</tr>
<tr>
<td>GLF4 - Gulfstream IV/G400</td>
<td>88</td>
</tr>
<tr>
<td>C750 - Cessna Citation X</td>
<td>74</td>
</tr>
<tr>
<td>LJ60 - Bombardier Learjet 60</td>
<td>42</td>
</tr>
<tr>
<td>GALX - IAI 1126 Galaxy</td>
<td>36</td>
</tr>
<tr>
<td>C650 - Cessna III/VI/VII</td>
<td>28</td>
</tr>
<tr>
<td>Other</td>
<td>38</td>
</tr>
<tr>
<td>C-II/D-II Total</td>
<td>1,274</td>
</tr>
</tbody>
</table>
QUESTIONS?
Next Steps

• TAC meeting summary – to be posted online
• E-mail to public with link to online materials
• Next TAC meeting: scheduled for July 9th
QUESTIONS & DISCUSSION
THANK YOU

osuairport.org/airport-facilities/master-plan